Математика. 6 клас. Дільники натурального числа. Прості і складені числа

Тип: Урок.
Наука: Математика.
Формат: doc.
К-сть сторінок: 3.
Короткий опис:

Мета уроку: систематизувати знання учнів про зміст дії ділення натуральних чисел; розширити знання учнів про властивості ділення натуральних чисел, доповнити їх уявленням про такі поняття, як дільник числа, кратне числу, прості і складені числа; сформувати вміння учнів знаходити дільник числа та класифікувати натуральні числа залежно від кількості дільників.
Тип уроку: засвоєння нових знань.

Хід уроку

I. Організаційний момент

II. Актуалізація опорних знань

Оскільки теми «Ділення натуральних чисел» і «Ділення десяткових дробів» була опрацьована учнями в 5 класі на достатньому рівні, можна «підвести» учнів до основних понять уроку, виконавши усні вправи на ділення та проаналізувавши одержані відповіді.

Усні вправи

1. Виконайте ділення і зробіть перевірку множенням.

35 : 7    3,5 : 7    4 : 8    3,5 : 0,7

28 : 4    2,8 : 4    2 : 5    0,28 : 0,4

63 : 9    0,63 : 9    1 : 2    0,63 : 0,09

56 : 7    5,6 : 7    3 : 4    0,056 : 0,7

0 : 3    3 : 0

2. Розв’яжіть рівняння: а) 7х = 35; б) 0,4х = 0,28; в) х + 7х = 4.

Запитання до класу

1. Чи можна виконати ділення

а) натурального числа на натуральне число;

б) десяткового дробу на натуральне число;

в) десяткового дробу на десятковий дріб?

(З приводу відповідей на запитання 1 а)-в) можна учням додатково пояснити, що «ділення можна виконати» означає отримання частки або у вигляді натурального числа, або у вигляді звичайного чи десяткового дробу.)

2. Чи завжди від ділення двох натуральних чисел маємо в частці натуральне число? (Ні, це може бути як натуральне число, так і дріб.)

III. Формування нових знань

Отже, після виконання усних вправ і аналізу одержаних відповідей, учні будуть готові до сприйняття та осмислення таких понять:

1) Поняття подільності двох натуральних чисел а і b.

2) Поняття дільника числа; кратного числу.

3) Поняття складеного і простого чисел.

4) Класифікація натуральних чисел за кількістю дільників.

Ознайомлення учнів зі змістом зазначених понять можна супроводжувати таким конспектом:

rar

 Завантажити