Циклічні прискорювачі елементарних частинок

Тип: Реферат.
Наука: Фізика.
Формат: docx.
К-сть сторінок: 28.
Короткий опис:

Зміст
Вступ
1. Циклічні прискорювачі з сталим полем
1.1 Циклотрон
1.2 Ізохронний циклотрон
1.3 Фазотрон
1.4 Мікротрон
2. Циклічні прискорювачі з сталим радіусом орбіти
2.1 Синхротрон
2.2 Синхрофазотрон
Висновок
Використана література

Вступ

Поштовхом до розвитку прискорювачів заряджених частинок послужили дослідження будови ядра, що вимагали потоків заряджених частинок високої енергії. Природні джерела заряджених частинок, що застосовувалися спочатку, – радіоактивні елементи – були обмежені як по інтенсивності, так і по енергії частинок, що випускаються. З моменту здійснення першого штучного перетворення ядер (1919, Е. Резерфорд ) за допомогою потоку а-частинок від радіоактивного джерела почалися пошуки способів отримання пучків прискорених частинок.

У початковий період (1919-1932) розвиток прискорювачів йшов по шляху отримання високої напруги і їх використання для безпосереднього прискорення заряджених частинок. У 1931 амер. фізиком Р. Ван-де-Граафом був побудований електростатичний генератор, а в 1932 англ. фізики Дж. Кокрофт і Е. Уолтон в лабораторії Резерфорда розробили каскадний генератор. Ці установки дозволили отримати потоки прискорених частинок з енергією близько мільйона електрон-вольт (Мев). У 1932 вперше була здійснена ядерна реакція, що порушується штучно прискореними частинками, – розщеплювання ядра літію протонами.

Період 1931-1944 – час зародження і розквіту резонансного методу прискорення, при якому прискорювані частинки багато разів проходять прискорюючий проміжок, набираючи велику енергію навіть при помірній прискорюючій напрузі. Засновані на цьому методі циклічні прискорювачі -циклотрони – незабаром обігнали в своєму розвитку електростатичні прискорювачі. До кінця періоду на циклотронах була досягнута енергія протонів близько 10-20 Мев. У 1940 амер. фізик Д. У. Керст реалізував циклічний індукційний прискорювач електронів (бетатрон), ідея якого раніше вже висувалася (амер. фізик Дж. Слепян, 1922; швейц. фізик Р. Відерое, 1928).

Розробка прискорювачів сучасного типу почалася з 1944, коли рад. фізик В. И. Векслер і незалежно від нього (дещо пізніше) амер. фізик Е. М. Макміллан відкрили механізм автофазування, що діє в резонансних прискорювачах і дозволяє істотно підвищити енергію прискорених частинок. На основі цього принципу були запропоновані нові типи резонансних прискорювачів – синхротрон, фазотрон, синхрофазотрон, мікротрон. В цей же час розвиток радіотехніки зробив можливим створення ефективних резонансних лінійних прискорювачів електронів і важких заряджених частинок.

На початку 50-х pp. був запропонований принцип знакозмінного фокусування частинок (амер. учений Н. Крістофілос, 1950; Е. Курант, М. Лівінгстон, X. Снайдер, 1952), істотно підвищила технічну межу досяжних енергій, в циклічних і лінійних прискорювачах заряджених частинок . В 1956 Векслер опублікував роботу, в якій була висунута ідея когерентного, або колективного, методу прискорення частинок.

Наступні два десятиліття можна назвати роками реалізації цих ідей і технічного удосконалення прискорювачів заряджених частинок. Для прискорення електронів перспективнішими виявилися лінійні резонансні прискорювачі. Найбільший з них, на 22 Гев, був запущений в 1966 амер. фізиком В. Панофским (США, Станфорд). Для протонів найбільші енергії досягнуті в синхрофазотронах. У 1957 в СРСР (Дубна) був запущений найбільший для того часу синхрофазотрон – на енергію 10 Гев. Через декілька років в Швейцарії і США вступили в лад синхрофазотрони з сильним фокусуванням на 25-30 Гев, а в 1967 в СРСР під Серпуховом -синхрофазотрон на 76 Гев, який протягом багатьох років був найбільшим в світі. У 1972 в США був створений синхрофазотрон на 200-400 Гев. У СРСР і США розробляються проекти прискорювачів на 1 000-5 000 Гев. В середині 1990-х років найкрупнішим протонним синхротроном був «Теватрон» Національної прискорювальної лабораторії ім. Е.Ферми в Батавії (США). Як підказує сама назва, «Теватрон» прискорює згустки протонів в кільці діаметром 2 км. до енергії близько 1 Тев.

Сучасний розвиток прискорювачів йде як по шляху збільшення енергії прискорених частинок, так і по шляху нарощування інтенсивності (сили струму) і тривалості імпульсу прискореного пучка, поліпшення якості пучка (зменшення розкиду по енергії, поперечним координатам і швидкостям). Паралельно з розробкою нових методів прискорення удосконалюються традиційні методи: досліджуються можливості застосування надпровідних матеріалів (і відповідної ним техніки низьких температур) в її прискорюючих системах, що дозволяють різко скоротити розміри систем і енергетичні витрати; розширюється область застосування методів автоматичного управління в прискорювачах; прискорювачі доповнюються нагромаджувальними кільцями, що дозволяє досліджувати елементарні взаємодії в стрічних пучках. При цьому особлива увага приділяється зменшенню вартості установок.

Прискорювачі заряджених частинок можна класифікувати за різними ознаками. За типом прискорюваних частинок розрізняють електронні прискорювачі, протонні прискорювачі і прискорювачі іонів.

По характеру траєкторій частинок розрізняють лінійні прискорювачі (точніше, прямолінійні прискорювачі), в яких траєкторії частинок близькі до прямої лінії, і циклічні прискорювачі, в яких траєкторії частинок близькі до кола (або спіралі).

По характеру прискорюючого поля прискорювачі заряджених частинок ділять на резонансні прискорювачі, в яких прискорення проводиться змінним високочастотним (ВЧ) електромагнітним полем і для успішного прискорення частинки повинні рухатися в резонанс із зміною поля, і нерезонансні прискорювачі, в яких напрям поля за час прискорення не змінюється. Останні у свою чергу діляться на індукційні прискорювачі, в яких електричне прискорююче поле створюється за рахунок зміни поля , і високовольтні прискорювачі, в яких прискорююче поле обумовлене безпосередньо.

Завантажити  Завантажити