Chemical synthesis breakthrough holds promise for future antibiotics

Chemical synthesis breakthrough holds promise for future antibiotics

Antibiotic-resistant infections afflict over 2 million people annually and result in over 23,000 deaths in the U.S. each year, according to the Centers for Disease Control and Prevention (CDC). A 2018 study by the CDC's European counterpart found that drug-resistant superbugs were responsible for 33,000 deaths across Europe in 2015.

Researchers have previously identified thiopeptides, a naturally-occurring antibiotic compound, as a promising avenue of study. Thiopeptides have shown some effectiveness against MRSA and certain other bacterial species in limited trials, but their structural diversity makes it difficult to synthesize the molecules at a scale large enough for therapeutic use.

To make better use of thiopeptides, CU Boulder researchers went back to basics and re-examined previous assumptions about the foundational chemical properties of these molecules.

The researchers invented a new catalyst to drive reactions that facilitate the synthesis of the thiopeptides and form the essential scaffolding needed to curtail bacterial growth. Their efforts resulted in two new broadly representative antibiotics: micrococcin P1 and thiocillin I. The compounds are efficient, scaleable and produce no harmful byproducts.